Yapay Zeka İle Engelleri Aşıyoruz. IV (TensorFlow ile Protez Kontrolü)

TensorFlow ile Protez Kontrolü (Python)

Bu model, kullanıcının beyin dalgalarını tanıyıp öğrenerek protezin yürüyüş ve duruş hareketlerini yönlendirir.

pythonKopyalaDüzenleimport numpy as np
import tensorflow as tf
import serial
import time
import joblib
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds
from brainflow.data_filter import DataFilter, FilterTypes

# **1. EEG BAĞLANTISI**
params = BrainFlowInputParams()
params.serial_port = "COM3"
board = BoardShim(BoardIds.CYTON_BOARD.value, params)
board.prepare_session()
board.start_stream()
time.sleep(2)

# **2. ARDUINO BAĞLANTISI**
arduino = serial.Serial('COM5', 115200)

# **3. LSTM MODELİNİ OLUŞTURMA VEYA YÜKLEME**
try:
    model = tf.keras.models.load_model("brainwave_lstm_model.h5")
    print("📌 Önceden eğitilmiş model yüklendi!")
except:
    model = Sequential([
        LSTM(50, return_sequences=True, input_shape=(10, 2)),  # 10 zaman adımı, 2 özellik (Alpha & Beta)
        Dropout(0.2),
        LSTM(50),
        Dense(25, activation='relu'),
        Dense(2, activation='softmax')  # 2 çıktı (Yürüme & Durma)
    ])
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    print("⚠️ Yeni model oluşturuldu!")

# **4. EEG VERİLERİNİN ALINMASI & FİLTRELENMESİ**
def get_eeg_features():
    data = board.get_board_data()
    eeg_channels = BoardShim.get_eeg_channels(BoardIds.CYTON_BOARD.value)
    
    alpha_waves, beta_waves = [], []
    for ch in eeg_channels:
        DataFilter.detrend(data[ch], 3)
        DataFilter.perform_bandpass(data[ch], 250, 8.0, 12.0, 4, FilterTypes.BUTTERWORTH.value, 0)
        DataFilter.perform_bandpass(data[ch], 250, 12.0, 30.0, 4, FilterTypes.BUTTERWORTH.value, 0)

        alpha_waves.append(np.mean(data[ch]))
        beta_waves.append(np.mean(data[ch]))

    return [np.mean(alpha_waves), np.mean(beta_waves)]

# **5. MODELİN ÖĞRENMESİ & PROTEZİ KONTROL ETMESİ**
sequence_data = []  # Zaman serisi verisini kaydetmek için
def train_and_control():
    global sequence_data

    training_data = []
    labels = []

    while True:
        alpha, beta = get_eeg_features()

        print(f"Alpha: {alpha}, Beta: {beta}")

        # **Zaman Serisi Verisini Kaydet**
        sequence_data.append([alpha, beta])
        if len(sequence_data) > 10:  # 10 zaman adımı bekle
            sequence_data.pop(0)

        if len(sequence_data) == 10:
            input_data = np.expand_dims(sequence_data, axis=0)  # Modelin giriş boyutuna göre şekillendir
            prediction = model.predict(input_data)[0]
            command = np.argmax(prediction)  # 0 = Dur, 1 = Yürü

            if command == 1:
                print("📌 Komut: YÜRÜ!")
                arduino.write(b'1')
                training_data.append(sequence_data)
                labels.append([0, 1])  # Yürüme etiketi
            else:
                print("📌 Komut: DUR!")
                arduino.write(b'0')
                training_data.append(sequence_data)
                labels.append([1, 0])  # Dur etiketi

        # **Makine Öğrenmesi Modelini Güncelle**
        if len(training_data) > 100:
            x_train = np.array(training_data)
            y_train = np.array(labels)
            model.fit(x_train, y_train, epochs=5, batch_size=8, verbose=1)
            model.save("brainwave_lstm_model.h5")
            print("✅ Model eğitildi ve kaydedildi!")
            training_data, labels = [], []  # Eğitim verisini sıfırla

        time.sleep(0.5)

# **6. BAŞLATMA**
try:
    train_and_control()
except KeyboardInterrupt:
    board.stop_stream()
    board.release_session()
    arduino.close()
    print("🔌 Bağlantılar kapatıldı!")

🔹 2. Protezi Kontrol Eden Arduino Kodu

cppKopyalaDüzenle#include <Servo.h>

Servo kneeServo;  // Diz eklemi için servo motor
Servo ankleServo; // Ayak bileği için servo motor

void setup() {
  Serial.begin(115200);
  kneeServo.attach(9);
  ankleServo.attach(10);
}

void loop() {
  if (Serial.available()) {
    char command = Serial.read();
    
    if (command == '1') {  // Yürüme komutu
      kneeServo.write(90);   // Dizi bük
      ankleServo.write(45);  // Ayak bileğini kaldır
      delay(500);
      kneeServo.write(0);    // Diz aç
      ankleServo.write(0);   // Ayak düz
    } 
    else if (command == '0') {  // Durdurma komutu
      kneeServo.write(0);
      ankleServo.write(0);
    }
  }
}

🔹 Çalışma Mantığı

1️⃣ Beyin Dalgalarının Okunması:

  • OpenBCI veya NeuroSky MindWave gibi EEG sensörlerinden alpha (8-12 Hz) ve beta (12-30 Hz) dalgaları alınır.

2️⃣ Derin Öğrenme Modeli (LSTM) ile Karar Verme:

  • Geçmiş 10 EEG verisini kullanarak hareket veya duruş tahmin edilir.
  • Kullanıcı düşündükçe model, yürüyüş stilini öğrenir ve kişiselleştirir.

3️⃣ Protezin Kontrolü:

  • Yürüme komutu: Arduino diz eklemini ve ayak bileğini hareket ettirir.
  • Durma komutu: Protez hareketsiz kalır.

🔹 Avantajlar

Makine Öğrenmesi (ML) & Derin Öğrenme (DL) desteği ile kişiselleştirilmiş kontrol.
Gerçek zamanlı EEG analizi ile daha hassas hareket komutları.
Model, kullanıcı beyin dalgalarını öğrendikçe daha iyi hale gelir.

Böylece beyin dalgalarıyla kontrol edilen protez, kullanıcının düşüncelerine uyum sağlayarak çalışır! 🚀

  • Gönderiler/Makaleler/Tezler

    İsrail Hava Savunma Sistemi: Iron Dome (Kippat Barzel / Demir Kubbe)

    Kısa özet Iron Dome, kısa menzilli roket, topçu mühimmatı ve havadan gelen benzer tehditleri (kısa menzilli füzeler, bazı dronlar ve havan/topçu mermileri) tespit edip, tehdit oluşturdukları sivil veya stratejik alanlara…

    Operasyonel Mükemmelliğe Giden Yol: Endüstri Mühendisliğinin Temel Prensipleri ve Araçları

    Özet Küresel rekabetin yoğunlaştığı günümüzde, organizasyonların sürdürülebilir başarı elde etmesi için operasyonel mükemmellik kritik bir stratejik hedef haline gelmiştir. Operasyonel mükemmellik, yalnızca maliyet düşürme değil; kaliteyi, verimliliği, esnekliği ve müşteri…

    Bir yanıt yazın

    E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

    Neler Kaçırdın?

    İsrail Hava Savunma Sistemi: Iron Dome (Kippat Barzel / Demir Kubbe)

    • By admin
    • Eylül 11, 2025
    • 21 views
    İsrail Hava Savunma Sistemi: Iron Dome (Kippat Barzel / Demir Kubbe)

    Operasyonel Mükemmelliğe Giden Yol: Endüstri Mühendisliğinin Temel Prensipleri ve Araçları

    • By admin
    • Eylül 9, 2025
    • 22 views
    Operasyonel Mükemmelliğe Giden Yol: Endüstri Mühendisliğinin Temel Prensipleri ve Araçları

    Senaryo: Siber Yolla İHA/SİHA’ların Ele Geçirilmesi – En Kötü Durum Analizi

    • By admin
    • Eylül 7, 2025
    • 27 views
    Senaryo: Siber Yolla İHA/SİHA’ların Ele Geçirilmesi – En Kötü Durum Analizi

    ABD Siber İstihbarat Oluşumları

    • By admin
    • Eylül 7, 2025
    • 22 views
    ABD Siber İstihbarat Oluşumları

    Temel İstihbarat ve Uluslararası İlişkilerSiber Çağda Bilgi ve Güvenlik (KİTABI)

    • By admin
    • Temmuz 18, 2025
    • 170 views
    Temel İstihbarat ve Uluslararası İlişkilerSiber Çağda Bilgi ve Güvenlik (KİTABI)

    ISP Log Management and Deletion Methods from Servers: Technical Guide and Application Handbook

    • By admin
    • Temmuz 12, 2025
    • 108 views
    ISP Log Management and Deletion Methods from Servers: Technical Guide and Application Handbook